

TOPOLOGICAL SIMPLIFICATION OF NESTED SHAPES

Dan Zeng, Tao Ju (Washington University in St. Louis)

Erin Chambers, David Letscher (St. Louis University)

SGP 2022

• A sequence of monotonically expanding shapes

Wikipedia

Multi-layered structures

Tissue layers

• Multi-layered structures

- Multi-layered structures
 - The outer surface of each layer forms a nested sequence

• Growing plant roots

Wikipedia

• Growing plant roots

Invariant to continuous geometric deformation

Wikipedia

- Invariant to continuous geometric deformation
- Many geometry processing tasks are sensitive to topology:
 - Mesh simplification and fairing
 - Surface parameterization
 - Geodesic distances
 - Surface matching
 - Physical simulations

Mesh simplification before and after removing redundant topological features [Wood 04]

Topological Errors

Reconstruction may introduce unwanted topological features

Topological Errors

• Reconstruction may introduce unwanted topological features

- Remove unwanted topological features in reconstructed shapes
 - Maintain nesting (necessary for defining layers or modeling root growth)

- Simplifying the topology of one shape
 - Removing handles [Shattuck 01; Han 02; Wood 04;
 Chen 06; Zhou 07; Segonne 07]
 - Removing all features
 - Morphological opening/closing [Nooruddin 03]
 - Inflation and deflation [Kriegeskorte 01; Bischoff 02; Szymczak 03]
 - Local heuristics [Ju 07]
 - Global optimization [Zeng 20]

- Simplifying the topology of one shape
 - Cannot guarantee nesting when applied independently to each shape

- Simplifying the topology of a scalar function
 - Removes extraneous critical points, thus simplifying the topology of *all* level sets (which are nested)
 - Numerical optimization [Bremer 04; Patane 09; Weinkauf 10; Gunther 14]
 - Combinatorial methods [Edelsbrunner 06; Bauer 12; Tierny 12,17; Lukasczyk 20]

14492 extrema

12 extrema

- Simplifying the topology of a scalar function
 - Saddles in 3D (corresponding to handles of the level sets) are challenging to remove

Removing all local minima except one [Gunther 14]

- Simplifies the topology of a shape sequence while maintaining nesting
 - Removes all three types of topological features (components, handles, voids)
 - Minimally alters the shapes

- Technical contributions
 - Extension of the single-shape method of [Zeng 20]
 - Formulation as a discrete optimization problem
 - An efficient and effective solver

Topological Operators

Single-shape Simplification [Zeng 20]

Single-shape Simplification [Zeng 20]

- Compute candidate cuts and fills
 - Applying a cut or fill removes one or more features
 - Each candidate associated with a cost
- Select a subset of candidates that:
 - Maximally removes topological features
 - Minimizes total cost

Single-shape Simplification [Zeng 20]

- Compute candidate cuts and fills
 - Applying a cut or fill removes one or more features
 - Each candidate associated with a cost
- Select a subset of candidates that:
 - Maximally removes topological features
 - Minimizes total cost
- Solved as a graph labelling problem

Nesting-Aware Candidates

- Cut x may be used (if z is also used)
- Cut y may never be used

- Fill x may be used (if z is also used)
- Fill y may never be used

• Given:

[Zeng

- Nested shapes $\{T_1 \subset \cdots \subset T_n\}$
- Nesting-aware candidates $\{X_1, \dots, X_n\}$, each with a cost
- Label candidates as inside (1) or outside (0) to:
 - Maximally remove topological features of each shape
 - Minimize total costs of 0-labelled cuts and 1-labelled fills
 - Maintain nesting

• Given:

[Zeng

- Nested shapes $\{T_1 \subset \cdots \subset T_n\}$
- Nesting-aware candidates $\{X_1, \dots, X_n\}$, each with a cost
- Label candidates as inside (1) or outside (0) to:
 - Maximally remove topological features of each shape
 - Minimize total costs of 0-labelled cuts and 1-labelled fills
 - Maintain nesting

• Given:

[Zeng

- Nested shapes $\{T_1 \subset \cdots \subset T_n\}$
- Nesting-aware candidates $\{X_1, \dots, X_n\}$, each with a cost
- Label candidates as inside (1) or outside (0) to:
 - Maximally remove topological features of each shape
 - Minimize total costs of 0-labelled cuts and 1-labelled fills
 - Maintain nesting

• Given:

[Zeng

- Nested shapes $\{T_1 \subset \cdots \subset T_n\}$
- Nesting-aware candidates $\{X_1, \dots, X_n\}$, each with a cost
- Label candidates as inside (1) or outside (0) to:
 - Maximally remove topological features of each shape
 - Minimize total costs of 0-labelled cuts and 1-labelled fills
 - Avoid conflicting labels
 - Conflict: $x \in X_{i-1}$ overlaps with $y \in X_i$, x has label 1, y has label 0

• Given:

[Zeng

- Nested shapes $\{T_1 \subset \cdots \subset T_n\}$
- Nesting-aware candidates $\{X_1, \dots, X_n\}$, each with a cost
- Label candidates as inside (1) or outside (0) to:
 - Maximally remove topological features of each shape
 - Minimize total costs of 0-labelled cuts and 1-labelled fills
 - Avoid conflicting labels
 - Conflict: $x \in X_{i-1}$ overlaps with $y \in X_i$, x has label 1, y has label 0

- Propagate labels from one shape to others while avoiding conflicts
 - Use [Zeng 20] to optimize labels on each shape

. . .

- Propagate labels from one shape to others while avoiding conflicts
 - Use [Zeng 20] to optimize labels on each shape

- Propagate labels from one shape to others while avoiding conflicts
 - Use [Zeng 20] to optimize labels on each shape

- Propagate labels from one shape to others while avoiding conflicts
 - Use [Zeng 20] to optimize labels on each shape

- Propagate labels from one shape to others while avoiding conflicts
 - Use [Zeng 20] to optimize labels on each shape

- Propagate labels from one shape to others while avoiding conflicts
 - Use [Zeng 20] to optimize labels on each shape

- Propagate labels from one shape to others while avoiding conflicts
 - Use [Zeng 20] to optimize labels on each shape

- Propagate labels from one shape to others while avoiding conflicts
 - Use [Zeng 20] to optimize labels on each shape

. . .

- Propagate labels from one shape to others while avoiding conflicts
 - Among all starting shapes, take the solution with the minimal topology and costs
 - Guarantees to be free of conflicts
 - May not be optimal in topology simplicity or geometric cost

- State: a labelling of all candidates, and a set of constrained candidates
 - In a queue sorted by topology + geometric cost

- State: a labelling of all candidates, and a set of constrained candidates
 - In a queue sorted by topology + geometric cost
- If the popped state has conflicts:

- State: a labelling of all candidates, and a set of constrained candidates
 - In a queue sorted by topology + geometric cost
- If the popped state has conflicts:
 - Pick a conflict $\{x \in X_i, y \in X_{i+1}\}$
 - Create 2 new states by either constraining x's label to be 0 or y's label to be 1

- State: a labelling of all candidates, and a set of constrained candidates
 - In a queue sorted by topology + geometric cost
- If the popped state has conflicts:
 - Pick a conflict $\{x \in X_i, y \in X_{i+1}\}$
 - Create 2 new states by either constraining x's label to be 0 or y's label to be 1

- State: a labelling of all candidates, and a set of constrained candidates
 - In a queue sorted by topology + geometric cost
- If the popped state has conflicts:
 - Pick a conflict $\{x \in X_i, y \in X_{i+1}\}$
 - Create 2 new states by either constraining x's label to be 0 or y's label to be 1

- State: a labelling of all candidates, and a set of constrained candidates
 - In a queue sorted by topology + geometric cost
- If the popped state has conflicts:
 - Pick a conflict $\{x \in X_i, y \in X_{i+1}\}$
 - Create 2 new states by either constraining x's label to be 0 or y's label to be 1
- Terminate otherwise

- Best-first search in a binary tree of states
- Returns optimal conflict-free labelling
 - Assuming [Zeng 20] is optimal
- High computational cost
 - # iterations can be exponential in total # candidates

Solver 3: Beam Search

- Limit queue size to a constant *B*
 - Keep only best B states
- Trade off optimality for efficiency
 - # iterations linear in total # candidates

45

Solver Comparison

Results: Roots

Results: Roots

Results: Brain

Cerebrospinal fluid White matter

Input (nested)

Single-shape [Zeng 20] (simply connected; not nested)

Our method (simply connected and nested)

Limitations and Future Works

- Need more "natural-looking" candidates and "semantic" geometric costs
- Handling non-cubical complexes
- How to simplify a (not necessarily nesting) shape collection in a consistent way?

Input

Our method

Acknowledgement

- Danforth Plant Science Center
 - Chris Topp, Mao Li
- Funding
 - NSF ABI-1759836, NSF EF-1921728, AF-1907612 and AF-2106672
 - WashU Imaging Science Pathway Fellowship (Dan)

Danforth Plant Science Center

Chris Topp

Dan Zeng

