TOPOLOGICAL SIMPLIFICATION OF NESTED SHAPES

Dan Zeng, Tao Ju (Washington University in St. Louis)
Erin Chambers, David Letscher (St. Louis University)
SGP 2022

- A sequence of monotonically expanding shapes

Wikipedia

- Multi-layered structures

Geological strata

Tissue layers

Nested Shapes

- Multi-layered structures

Cerebrospinal fluid

Nested Shapes

- Multi-layered structures
- The outer surface of each layer forms a nested sequence

Cerebrospinal fluid

Nested Shapes

- Growing plant roots

Wikipedia

- Growing plant roots

Rice roots
Maize (corn) roots

Topology

- Invariant to continuous geometric deformation

Wikipedia

Components

Handle

Topology

- Invariant to continuous geometric deformation
- Many geometry processing tasks are sensitive to topology:
- Mesh simplification and fairing
- Surface parameterization
- Geodesic distances
- Surface matching
- Physical simulations

Topological Errors

- Reconstruction may introduce unwanted topological features

Cerebrospinal fluid

White matter

Topological Errors

- Reconstruction may introduce unwanted topological features

- Remove unwanted topological features in reconstructed shapes
- Maintain nesting (necessary for defining layers or modeling root growth)

Previous Works

- Simplifying the topology of one shape
- Removing handles [Shattuck 01; Han 02; Wood 04;

Chen 06; Zhou 07; Segonne 07]

- Removing all features
- Morphological opening/closing [Nooruddin 03]
- Inflation and deflation [Kriegeskorte 01; Bischoff 02; Szymczak 03]
- Local heuristics [Ju 07]
- Global optimization [Zeng 20]

Previous Works

- Simplifying the topology of one shape
- Cannot guarantee nesting when applied independently to each shape

Time 1

Input:

Simplified:
(simply connected)

Time 2

Previous Works

- Simplifying the topology of a scalar function
- Removes extraneous critical points, thus simplifying the topology of all level sets (which are nested)
- Numerical optimization [Bremer 04; Patane 09; Weinkauf 10; Gunther 14]
- Combinatorial methods [Edelsbrunner 06; Bauer 12; Tierny 12,17; Lukasczyk 20]

[Gunther 14]

12 extrema

Previous Works

- Simplifying the topology of a scalar function
- Saddles in 3D (corresponding to handles of the level sets) are challenging to remove

Our Work

- Simplifies the topology of a shape sequence while maintaining nesting
- Removes all three types of topological features (components, handles, voids)
- Minimally alters the shapes
- Technical contributions
- Extension of the single-shape method of [Zeng 20]
- Formulation as a discrete optimization problem
- An efficient and effective solver

Handle

Void

Filling

Single-shape Simplification [zeng 20]

- Compute candidate cuts and fills
- Applying a cut or fill removes one or more features
- Each candidate associated with a cost
- Select a subset of candidates that:
- Maximally removes topological features
- Minimizes total cost

Single-shape Simplification [Zeng 20]

- Compute candidate cuts and fills
- Applying a cut or fill removes one or more features
- Each candidate associated with a cost
- Select a subset of candidates that:
- Maximally removes topological features
- Minimizes total cost
- Solved as a graph labelling problem

Nesting-Aware Candidates

- Cut x may be used (if z is also used)
- Cut y may never be used
- Fill x may be used (if z is also used)
- Fill y may never be used

Optimization Problem

- Given:
- Nested shapes $\left\{T_{1} \subset \cdots \subset T_{n}\right\}$
- Nesting-aware candidates $\left\{X_{1}, \ldots, X_{n}\right\}$, each with a cost
- Label candidates as inside (1) or outside (0) to:

[Zeng
20] $\left[\begin{array}{l}- \text { Maximally remove topological features of each shape } \\ - \text { Minimize total costs of 0-labelled cuts and 1-labelled fills }\end{array}\right.$
- Maintain nesting

Optimization Problem

- Given:
- Nested shapes $\left\{T_{1} \subset \cdots \subset T_{n}\right\}$
- Nesting-aware candidates $\left\{X_{1}, \ldots, X_{n}\right\}$, each with a cost
- Label candidates as inside (1) or outside (0) to:
[Zeng [- Maximally remove topological features of each shape
20] - Minimize total costs of 0-labelled cuts and 1-labelled fills
- Maintain nesting

Optimization Problem

- Given:
- Nested shapes $\left\{T_{1} \subset \cdots \subset T_{n}\right\}$
- Nesting-aware candidates $\left\{X_{1}, \ldots, X_{n}\right\}$, each with a cost
- Label candidates as inside (1) or outside (0) to:

[Zeng
20] $\left[\begin{array}{l}- \text { Maximally remove topological features of each shape } \\ - \text { Minimize total costs of 0-labelled cuts and 1-labelled fills }\end{array}\right.$
- Maintain nesting

Optimization Problem

- Given:
- Nested shapes $\left\{T_{1} \subset \cdots \subset T_{n}\right\}$
- Nesting-aware candidates $\left\{X_{1}, \ldots, X_{n}\right\}$, each with a cost
- Label candidates as inside (1) or outside (0) to:

$$
T_{i-1}
$$

$$
T_{i}
$$

- Avoid conflicting labels
- Conflict: $x \in X_{i-1}$ overlaps with $y \in X_{i}, x$ has label $1, y$ has label 0

Optimization Problem

- Given:
- Nested shapes $\left\{T_{1} \subset \cdots \subset T_{n}\right\}$
- Nesting-aware candidates $\left\{X_{1}, \ldots, X_{n}\right\}$, each with a cost
- Label candidates as inside (1) or outside (0) to:
[Zeng
20] $\left[\begin{array}{l}- \text { Maximally remove topological features of each shape } \\ - \text { Minimize total costs of 0-labelled cuts and 1-labelled fills }\end{array}\right.$
- Avoid conflicting labels
- Conflict: $x \in X_{i-1}$ overlaps with $y \in X_{i}, x$ has label $1, y$ has label 0

$$
T_{i-1}
$$

$$
T_{i}
$$

Solver 1: Label Propagation

- Propagate labels from one shape to others while avoiding conflicts
- Use [Zeng 20] to optimize labels on each shape

Solver 1: Label Propagation

- Propagate labels from one shape to others while avoiding conflicts
- Use [Zeng 20] to optimize labels on each shape

Solver 1: Label Propagation

- Propagate labels from one shape to others while avoiding conflicts
- Use [Zeng 20] to optimize labels on each shape

Solver 1: Label Propagation

- Propagate labels from one shape to others while avoiding conflicts
- Use [Zeng 20] to optimize labels on each shape

Solver 1: Label Propagation

- Propagate labels from one shape to others while avoiding conflicts
- Use [Zeng 20] to optimize labels on each shape

Solver 1: Label Propagation

- Propagate labels from one shape to others while avoiding conflicts
- Use [Zeng 20] to optimize labels on each shape

Solver 1: Label Propagation

- Propagate labels from one shape to others while avoiding conflicts
- Use [Zeng 20] to optimize labels on each shape

Solver 1: Label Propagation

- Propagate labels from one shape to others while avoiding conflicts
- Use [Zeng 20] to optimize labels on each shape

Solver 1: Label Propagation

- Propagate labels from one shape to others while avoiding conflicts
- Among all starting shapes, take the solution with the minimal topology and costs
- Guarantees to be free of conflicts
- May not be optimal in topology simplicity or geometric cost

Solver 2: State-space Search

- State: a labelling of all candidates, and a set of constrained candidates
- In a queue sorted by topology + geometric cost

Solver 2: State-space Search

- State: a labelling of all candidates, and a set of constrained candidates
- In a queue sorted by topology + geometric cost
- If the popped state has conflicts:

Solver 2: State-space Search

- State: a labelling of all candidates, and a set of constrained candidates
- In a queue sorted by topology + geometric cost
- If the popped state has conflicts:
- Pick a conflict $\left\{x \in X_{i}, y \in X_{i+1}\right\}$
- Create 2 new states by either constraining x 's label to be 0 or y^{\prime} s label to be 1

Solver 2: State-space Search

- State: a labelling of all candidates, and a set of constrained candidates
- In a queue sorted by topology + geometric cost
- If the popped state has conflicts:
- Pick a conflict $\left\{x \in X_{i}, y \in X_{i+1}\right\}$
- Create 2 new states by either constraining x 's label to be 0 or y^{\prime} s label to be 1

Solver 2: State-space Search

- State: a labelling of all candidates, and a set of constrained candidates
- In a queue sorted by topology + geometric cost
- If the popped state has conflicts:
- Pick a conflict $\left\{x \in X_{i}, y \in X_{i+1}\right\}$
- Create 2 new states by either constraining x 's label to be 0 or y^{\prime} s label to be 1

Solver 2: State-space Search

- State: a labelling of all candidates, and a set of constrained candidates
- In a queue sorted by topology + geometric cost
- If the popped state has conflicts:
- Pick a conflict $\left\{x \in X_{i}, y \in X_{i+1}\right\}$
- Create 2 new states by either constraining x 's label to be 0 or y^{\prime} s label to be 1

- Terminate otherwise

Solver 2: State-space Search

- Best-first search in a binary tree of states
- Returns optimal conflict-free labelling
- Assuming [Zeng 20] is optimal
- High computational cost
- \# iterations can be exponential in total \# candidates

Solver 3: Beam Search

- Limit queue size to a constant B
- Keep only best B states
- Trade off optimality for efficiency
- \# iterations linear in total \# candidates

Solver Comparison

\# components: 31
\# handles: 371
\# voids: 106
\# Topo. features

Results: Roots

Time 1

Input:

Single-shape [Zeng 20]:
(Simply connected)

Our method:
(Simply connected)

Results: Roots

Cerebrospinal fluid White matter

Input (nested)

Single-shape [Zeng 20]
(simply connected; not nested)

Our method
(simply connected and nested)

- Need more "natural-looking" candidates and "semantic" geometric costs
- Handling non-cubical complexes
- How to simplify a (not necessarily nesting) shape collection in a consistent way?

Input

Our method

Acknowledgement

- Danforth Plant Science Center
- Chris Topp, Mao Li
- Funding
- NSF ABI-1759836, NSF EF-1921728, AF-1907612 and AF-2106672
- WashU Imaging Science Pathway Fellowship (Dan)

Danforth Plant Science Center

Chris Topp

Dan Zeng

